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The coupled force-balance and scattering equations have been derived and applied to study nonlinear
transport of electrons subjected to a strong dc electric field in an elastic-scattering-limited quantum wire.
Numerical results have demonstrated both field-induced heating-up and cooling-down behaviors in the non-
equilibrium part of the total electron-distribution function by varying the impurity density or the width of the
quantum wire. The obtained asymmetric distribution function in momentum space invalidates the application
of the energy-balance equation to our quantum-wire system in the center-of-mass frame. The experimentally
observed suppression of mobility by a driving field for the center-of-mass motion in the quantum-wire system
has been reproduced �see K. Tsubaki et al., Electr. Lett. 24, 1267 �1988�; M. Hauser et al., Sci. Technol. 9, 951
�1994��. In addition, the thermal enhancement of mobility in the elastic-scattering-limited system has been
demonstrated, in accordance with a similar prediction made for graphene nanoribbons �see T. Fang et al., Phys.
Rev. B 78, 205403 �2008��. This thermal enhancement has been found to play a more and more significant role
with higher lattice temperature and becomes stronger for a low-driving field.
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The force-balance equation was proposed several years
ago in an effort to capture the principal physics of center-of-
mass motion. This has been accomplished by introducing
ensemble-averaged frictional forces based on a perturbation
approximation to the carrier-distribution function. These
forces are due to scattering from both impurities and
phonons �at high temperatures� and contribute as one of the
source terms to a Newton-type equation of motion.1 This
simple and intuitive approach was later generalized in con-
junction with an energy-balance equation that includes the
effect due to heating in the carrier-distribution function.2

However, the employed ansatz with a quasiequilibrium car-
rier distribution at a different carrier temperature than a lat-
tice temperature is expected to hold only for systems with a
dominant Coulomb-pair scattering of carriers at low tem-
peratures and high electron densities at the same time.3,4

In this report, we derive coupled force-balance and scat-
tering equations which incorporate relatively slow center-of-
mass drift motion of electrons in the presence of a dc electric
field as well as an ultrafast relative scattering motion of elec-
trons. Our formalism is based on previously developed dia-
grammatic descriptions5 for momentum dissipation and for
microscopic electron scattering-in and scattering-out rates.
However, a previous study3 was limited only to the expanded
Fokker-Planck equation for the distribution function. The
center-of-mass drift velocity of electrons can be solely deter-
mined by the force-balance equation while the nonequilib-
rium distribution function of electrons is decided by the mi-
croscopic scattering equation with a Doppler shift5 but
without a Boltzmann drift term,6 instead of by a limited-use
energy-balance equation.2 The exact solution of the Boltz-
mann transport equation in the laboratory frame was ob-
tained for electrons in a quasi-one-dimensional quantum-dot
superlattice in the presence of a strong dc or a strong ac
electric field,7 in which both a short-range elastic scattering

and an inelastic scattering are treated microscopically. The
proposed scattering equation without a drift term in the
center-of-mass frame allows us to formally generalize the
current theory to include both stimulated optical transitions
and dephasing of induced optical coherence in the presence
of a pump laser. Therefore, it establishes a direct connection
between the semiclassical force-balance equation1 and the
quantum semiconductor Bloch equations.8–10 As a first step,
we would like to apply our theory to the nonlinear transport
of electrons under a strong dc electric field in a quantum wire
by including a more realistic screened long-range electron-
impurity scattering11 at low temperatures and electron densi-
ties as well as at relatively high impurity densities for high-
mobility samples.

For the relative scattering motion of electrons in the
center-of-mass frame, our numerical results demonstrate
both field-induced heating-up and cooling-down behaviors in
the nonequilibrium part of the total distribution function of
electrons within the nonlinear-transport regime for various
impurity densities. For the center-of-mass motion, on the
other hand, the field-dependent mobility is found to decrease
with driving electric field12,13 for nonlinear electron trans-
port. Moreover, the mobility increases with lattice
temperature14 for the impurity-limited system considered in
this report.

For the system shown in Fig. 1, the relevant many-body
Hamiltonian in the y direction, Hy, for N electrons in a
quasi-one-dimensional n-doped quantum wire under an elec-
tric field F along the y �wire� direction can be written as

Hy = −
�2

2m��
j=1

N
�2

�yj
2 − eF�

j=1

N

yj + He−i, �1�

where m� is the electron effective mass in host materials and
yj is the coordinate of the jth electron along the wire direc-
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tion. In Eq. �1�, He−i represents the electron-impurity inter-
action and the electron-phonon interaction is neglected. In
our model, we can express the center-of-mass position and
momentum operators along the y direction as

Yc =
1

N
�
j=1

N

yj, P̂c = �
j=1

N

p̂j , �2�

where p̂j =−i�� /�yj is the quantum-mechanical momentum
operator of the jth electron. For simplicity, we assume that
the transverse quantum confinements in both the z and x
directions are so strong that only the ground states in these
two directions are occupied. Therefore, we consider only the
lowest single subband for the quantum wire under F, at low
electron densities n0, low lattice temperatures T, and rela-
tively high impurity densities ni with a thermal contact to an
external heat bath, where both the electron-phonon and the
Coulomb-pair scatterings of electrons in the system can be
neglected.

Using the Hamiltonian in Eq. �1�, Yc, and P̂c defined in
Eq. �2�, we are able to calculate the center-of-mass velocity

operator V̂c by means of the Heisenberg equation

V̂c =
dYc

dt
=

1

i�
�Yc,Hy� =

1

Ni�
�
j=1

N

�yj,Hy� =
P̂c

Nm�
, �3�

where the notation �Â , B̂�� ÂB̂− B̂Â for a pair of operators.

Consequently, we obtain the drift velocity vd= �V̂c�av of elec-
trons through the quasi-one-dimensional quantum wire,

where �Â�av represents the quantum-statistical average of an

operator Â. Furthermore, we obtain from Eq. �3� the force-
balance equation �similar to the Newton’s equation in classi-
cal mechanics� to determine the dynamics of vd

dvd

dt
=	 dV̂c

dt



av
=

1

Nm�i�	�
j=1

N

�p̂j,Hy�

av

=
eF
m�

+ Ai��f�,vd� , �4�

where the Ai��f� ,vd�, which is a functional of �fk� and fk
represents the total nonequilibrium distribution of k-state
electrons in relative scattering motions, is the ensemble-
averaged resistive acceleration �related to an impurity fric-
tional force� due to scattering of electrons by impurities, and
the resistive acceleration due to electron-phonon scattering is
neglected. In addition, Ai��f� ,vd� in Eq. �4� is given by3,5

Ai��f�,vd� = Ni

N
�2�

�
�
k,k�

�Ui��k� − k���2�v�k�� − v�k���fk − fk��

�����k�� − ��k� + ��k� − k�vd� . �5�

In Eq. �5�, v�k�=�−1d��k� /dk=�k /m� is the group velocity,
��k�=�2k2 /2m� is the kinetic energy of electrons, k is the
wave number in the y direction, N=2�kfk is the total number
of electrons, Ni is the number of ionized donors in the sys-
tem, and the last term containing vd is for the Doppler
shift.3,5 The explicit expression for �Ui��q���2 in Eq. �5� is
presented below in Eq. �8�.

By assuming a Boltzmann-type collision term6 for
electron-impurity scattering, the microscopic scattering
equation for relative motion of electrons in the center-of-
mass frame can be expressed as3,5

dg�k�
dt

= Wk
�in���f�,vd��1 − fk� − Wk

�out���f�,vd�fk

= Wk
�in���f�,vd��1 − fk

�0� − g�k��

− Wk
�out���f�,vd��fk

�0� + g�k�� , �6�

where fk= fk
�0�+g�k�, fk

�0�=1 / �exp����k�−�0� /kBT�+1� is the
Fermi function for thermal-equilibrium electrons, �0 is the
chemical potential, g�k� represents the nonequilibrium part
of the total electron-distribution function, and �kg�k��0 en-
sures the conservation of the total number of electrons in the
system.15 The quantities Wk

�in���f� ,vd� and Wk
�out���f� ,vd� in

Eq. �6� are the scattering-in rate for electrons in the final k
state and the scattering-out rate for electrons in the initial k
state.

For the relative electron-impurity scattering in Eq. �6�, we
have3,5

�Wk
�in���f�,vd�

Wk
�out���f�,vd� �
= Ni

4�

�
�
k�

�k��k�

�Ui��k − k����2

� � fk�����k� − ��k�� + ��k − k��vd�

�1 − fk������k�� − ��k� + ��k� − k�vd� � , �7�

where the electron-phonon scattering is neglected and the
screened long-range Coulomb interaction between electrons
and ionized impurity atoms is given by

FIG. 1. �Color online� Setup for a quasi-one-dimensional
quantum-wire driven by an electric field along the y �wire� direc-
tion, where the transverse confinements in the z and x directions are
determined by a square quantum well and a parabolic potential,
respectively. The current flowing through the quantum wire be-
tween the source and drain electrodes is indicated by a thick �red�
arrow.
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�Ui��q���2 = � Z�e2

2��0�rL��q��2��
0

+�

d	 exp−
	2�2

4
�

�
R�	,q,z0�
�	2 + q2 �2

. �8�

Here, Z� is the charge number of impurity atoms, L is the
length of a quantum wire, �r is the dielectric constant of the
host material, and 2� measures the width of the spatial dis-
tribution of the ground-state wave function in the transverse
x direction. The form factor in Eq. �8� for the quantum-well
confinement is calculated as11

R�	,q,z0� = �
−�

+�

dz�
0�z��2exp�− �	2 + q2�z − z0�� , �9�

where 
0�z� is the ground-state wave function of the square
quantum well in the z direction and z0 is the position of a
single �-doping layer inside the quantum well. The static
dielectric function ��q� employed in Eq. �8� is given by

��q� = 1 +  e2

�2�0�r�vF
��

−�

�

dx�
−�

�

dx� 1

��2�
�exp−

x2 + x�2

�2 ��
−�

�

dz�
−�

�

dz��
0�z��2

�K0��q���x − x��2 + �z − z��2��
0�z���2, �10�

where vF=�kF /m� is the Fermi velocity, kF=�n0 /2 is the
Fermi wave number, n0=N /L is the linear electron density,
and K0�x� is the modified Bessel function of the second kind.
The quantum-well wave function 
0�z� in Eqs. �9� and �10� is
calculated by using the self-consistent Hartree-Fock
approximation.16

In our numerical calculations, we have chosen the follow-
ing parameters for the quantum wire: m�=0.067 m0 �m0 is
the free-electron mass�, appropriate for GaAs, �=37.5 Å,
n0=5�105 cm−1, ni /n0=0.01 �ni=Ni /L�, Z�=1, T=5 K,
and �r=12. For the square quantum well in the z direction,
we choose the well width LW=75 Å, the barrier height V0
=280 meV, the �-doping-layer position z0=0, the well ef-
fective mass mW=0.067m0, and barrier effective mass mB
=0.073 m0. From these parameters, we calculate the Fermi
velocity vF=13.6�106 cm /s, the Fermi wave number kF
=7.854�10−3 Å−1, and the chemical potential �0
=3.22 meV. Whenever we use different values of the param-
eters in our calculations, such as T, ni /n0 and F, this is
directly indicated in the figure captions.

Figures 2�a� and 2�b� report on g�k� at T=5 K as func-
tions of the dimensionless wave number k /kF for a number
of electric field strengths F at a lower impurity density
ni /n=0.01 in �a� and at a higher impurity density ni /n
=0.04 in �b�. At the lower impurity density in Fig. 2�a�, more
and more electrons are driven back from high-energy states
to states of low energy as we increase the electric field over
the range F=1–8 V /cm within the regime of nonlinear
electron transport. The transition from linear transport, where
Ohm’s law is applicable, to nonlinear transport can be attrib-
uted to the field-enhanced term Ai��f� ,vd� in Eq. �5�, which

increases much faster than the linear driving term in Eq. �4�
at high F. A large Doppler-shift term in Eq. �7� assists the
scattering of electrons out from high-energy states to low-
energy states, leading to a cooling down of electrons. How-
ever, when the impurity density is increased to ni /n=0.04 in
Fig. 2�b�, electrons are first heated up when F changes from
1 to 2 V/cm. This is closely followed by a cooling down of
electrons as F is further increased from 2 all the way up to 8
V/cm. Therefore, a stronger electric field F is required for
initiating an electronic cooling-down process in a system
with a higher impurity density. Since the reduction in
quantum-wire width � is equivalent to a higher impurity den-
sity, as shown in Eqs. �7� and �8�, we expect that the same
argument can also apply to the wire width �not shown�.

Plots for the nonequilibrium part of the total electron-
distribution function in Fig. 2 exhibit both electron cooling-
down and heating-up behaviors when different driving fields
F and impurity densities ni are used. This is a demonstration
of the effects of the relative scattering motion of electrons
with impurities in the center-of-mass frame. The other im-
portant feature of impurity scattering is manifested in the
ensemble-averaged frictional force term Ai��f� ,vd� in Eq.
�4�, which directly leads to a nonlinear dependence of the
drift velocity vd as a function of the driving electric field F
in the high-field transport regime. The nonlinear F depen-
dence for the drift velocity vd in �a�, as well as for the de-

FIG. 2. �Color online� Calculated nonequilibrium contributions
g�k� with T=5 K as functions of k /kF for four chosen values of dc
electric field, i.e., F=1 �solid �black� curves�, 2 �dashed �red�
curves�, 4 �dash-dotted �green� curves�, and 8 V/cm �dash-dot-
dotted �blue� curves�. In �a�, we set ni /n0=0.01 while we have
ni /n0=0.04 in �b�.
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duced mobility �c=vd /F in �b�, are shown in Fig. 3 with
ni /n0=0.01 and three lattice temperatures. For any chosen
value of F in Fig. 3�a�, vd increases with T, and this thermal
enhancement becomes more significant for higher T. Similar
thermal enhancement in mobility was also obtained in semi-
conducting graphene nanoribbons for elastic scattering.14

Furthermore, we find from Fig. 3�b� that �c decreases with F
for each fixed value of T. This field-induced mobility sup-
pression at low T was experimentally observed in quantum-

wire systems.12,13 In addition, the thermal enhancement in �c

becomes stronger at low values of F.
Two large positive peaks around k /kF= �1 at a low T

were found to be nonsymmetrical with respect to k=0 in the
nonequilibrium part g�k� of the total distribution function.
This is in contradiction with the ansatz for introducing the
energy-balance equation. Electrons were found to be heated
up first by a moderate F at low ni but they become cooled
down when ni is increased. This thermal-switching behavior
is a consequence of the dynamical balance between electron
scattering-in and scattering-out processes for the relative mo-
tion of electrons in the center-of-mass frame. Moreover, a
larger threshold dc electric field is required for starting up the
electron cooling-down process, i.e., electrons are driven back
from high-energy states to low-energy ones as we increase F
within the nonlinear-transport regime, in the system with a
higher ni �or with a smaller quantum-wire width ��. We
chose a value of ni /n0=0.01 since it is reasonable to assume
that the ionized-impurity density is less than the electron
density. Our results are not changed qualitatively for other
low values of impurity density and this chosen value should
allow us to arrive at reasonable conclusions concerning
transport. For chosen F, vd increases with T. This thermal
enhancement has been found to become more and more sig-
nificant as T was increased. Although the calculated vd is less
than vF=1.36�107 cm /s for the range of values of F, we
believe that vd could be made even larger at increased F and
T. In addition, the thermal enhancement of �c becomes
stronger for a low F. Our calculations have shown that �c is
roughly proportional to 1 /ni when F is fixed and it increases
with T almost at a uniform rate independent of ni and F. The
introduced microscopic scattering equation without the Bolt-
zmann drift term in the center-of-mass frame allows us es-
tablishing the connection between the force-balance equation
for transport and the semiconductor Bloch equations for op-
tical transitions.
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FIG. 3. �Color online� Plots of �a� the drift velocity vd and �b�
the mobility �c=vd /F with ni /n0=0.01 as functions of F for three
chosen values of temperature T: T=5 K �solid squares on black
curves�, 10 K �solid circles on red curves�, and 20 K �solid triangles
on blue curves�.
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